If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+12=25k
We move all terms to the left:
7k^2+12-(25k)=0
a = 7; b = -25; c = +12;
Δ = b2-4ac
Δ = -252-4·7·12
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-17}{2*7}=\frac{8}{14} =4/7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+17}{2*7}=\frac{42}{14} =3 $
| (x^2)+18x-189=0 | | 15+6d=45+8d | | 4x+9x-13=12x+1 | | 2x+x-5=-29 | | 205*x=41790 | | 12x+1+9x-13=4x+2 | | 1+2/5g=11-1/5g | | 156.25=x2 | | q/31=-3 | | 9x-13+12x+1=4x+2 | | 2x+x-5=29 | | 16-2f=5f+9 | | p-34=-28 | | 5m=6m–1 | | 9x-13+12+1=4x+2 | | 5c+7=3c+10 | | 3r+3=-3 | | v=9.8-v/(10) | | 1/4b-8=-21/4b | | 6x-1=14+9x | | x8+25=x6+77 | | 6÷7c=18 | | y00−3y0+2y=0 | | y−10y+25y=0 | | v=9.8-v/(.1) | | x×8+25=x×6+77 | | 10x+8°+3x+3°=180 | | (2x+8)+1(7x+10)=90 | | 5÷6k=-20 | | x-40+x=68 | | 5x+1+3x-4=7x+27 | | 7(2m-1)-3/5m=6/5m=6/5(4-3m) |